Write root of fourth 81x³y4z8 with rational exponents

The fourth root of ⁴√(81x³y⁴z⁸)with rational exponents is [tex]3x^{\frac{3}{4} }yz^{2}[/tex]
To find the fourth root of ⁴√(81x³y⁴z⁸) with rational exponents, we use the root rule of indices which states that [tex]\sqrt[n]{a} = a^{\frac{1}{n} }[/tex]
So, ⁴√(81x³y⁴z⁸) = ⁴√(81 × ⁴√x³ × ⁴√y⁴ × ⁴√z⁸)
We now apply the
So, ⁴√(81x³y⁴z⁸) = ⁴√81 × ⁴√x³ × ⁴√y⁴ × ⁴√z⁸
[tex]= 3 X x^{\frac{3}{4} } X y^{\frac{4}{4} } X z^{\frac{8}{4} } \\= 3 X x^{\frac{3}{4} } X y^{1} X z^{2} \\= 3x^{\frac{3}{4} }yz^{2}[/tex]
So, the fourth root of ⁴√(81x³y⁴z⁸)with rational exponents is [tex]3x^{\frac{3}{4} }yz^{2}[/tex]
Learn more about fourth root here:
https://brainly.com/question/21298897
#SPJ1