Respuesta :

The correct option is c. 7

The summation of the expression  [tex]\sum_{i=1}^{3}\left(4\left(\frac{1}{2}\right)^{i-1}\right)[/tex]  is 7.

What is summation (∑)?

The sum of terms that follow a pattern is denoted by the symbol '∑' "summation," which also serves as a shorthand notation.

A sum of several terms is typically represented by the symbol "∑" This symbol is typically accompanied with a variable index that includes all terms that must be taken into account when calculating the total.

The given expression is;

[tex]\sum_{i=1}^{3}\left(4\left(\frac{1}{2}\right)^{i-1}\right)[/tex]

The the property of summation, expand the values.

[tex]\sum_{i=1}^{3}\left(4\left(\frac{1}{2}\right)^{i-1}\right)=4\left(\frac{1}{2}\right)^{1-1}+4\left(\frac{1}{2}\right)^{2-1}+4\left(\frac{1}{2}\right)^{3-1}[/tex]

[tex]\sum_{i=1}^{3}\left(4\left(\frac{1}{2}\right)^{i-1}\right)=4\left(\frac{1}{2}\right)^{0}+4\left(\frac{1}{2}\right)^{1}+4\left(\frac{1}{2}\right)^{2}[/tex]

[tex]\sum_{i=1}^{3}\left(4\left(\frac{1}{2}\right)^{i-1}\right)=4\left(\frac{1}{1}\right)+4\left(\frac{1}{2}\right)+4\left(\frac{1}{4}\right)[/tex]

[tex]\sum_{i=1}^{3}\left(4\left(\frac{1}{2}\right)^{i-1}\right)=4+2+1\\[/tex]

[tex]\sum_{i=1}^{3}\left(4\left(\frac{1}{2}\right)^{i-1}\right)=7\\[/tex]

Therefore the solution of the given equation is 7.

To know more about the summation notation, here

https://brainly.com/question/10577562

#SPJ4

The correct question is;

What is the value of [tex]\sum_{i=1}^{3}\left(4\left(\frac{1}{2}\right)^{i-1}\right)[/tex] ?

a.7/8

b.8

c.7/2

d.7

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE