The measure of each interior angle of a regular polygon is [tex]\frac{180(n-2)}{n}[/tex] degrees, where n is the number of sides.
Question 1
[tex]144=\frac{180(n-2)}{n}\\\\144n=180(n-2)\\\\144n=180n-360\\\\-36n=-360\\\\n=10 \text{ sides}[/tex]
Question 2
[tex]\frac{180(n-2)}{n}=135\\\\180(n-2)=135n\\\\180n-360=135n\\\\-360=-45n\\\\n=8 \text{ sides}[/tex]