Transform the given equation into a system of first order equations. (Let x1 = u, x2 = u', x3 = u'', and x4 = u'''. Enter your answers in terms of x1, x2, x3, and x4.) u(4) − u = 0
a) x1' =
b) x2' =
c) x3' =
d) x4' =

Respuesta :

Given the 4th order linear ODE

[tex]u^{(4)} - u = 0[/tex]

we substitute

[tex]x_1 = u[/tex]

[tex]x_2 = {x_1}' = u'[/tex]

[tex]x_3 = {x_2}' = {x_1}'' = u''[/tex]

[tex]x_4 = {x_3}' = {x_2}'' = {x_1}''' = u'''[/tex]

Then the given equation transforms to

[tex]{x_4}' - x_1 = 0[/tex]

but we also need to relate this to the other derivative substitutions. This gives the system of differential equations

[tex]\begin{cases} {x_1}' = x_2 \\ {x_2}' = x_3 \\ {x_3}' = x_4 \\ {x_4}' = x_1 \end{cases}[/tex]

In matrix form,

[tex]\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix}' = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix}[/tex]

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE