Suppose that f'(4) = 3 , g'(4) = 7 , g(4) = 4 and g(x) not= to 4 for xnot= to 4 . then cmpute lim xgose to 4 f(g(x))/x-4-f(4)/x-4

Respuesta :

It looks like the limit you want to compute is

[tex]\displaystyle \lim_{x\to4} \frac{f(g(x)) - f(4)}{x-4}[/tex]

Since [tex]g(4)=4[/tex], this limit corresponds exactly to the derivative of [tex](f\circ g)(x) = f(g(x))[/tex] at [tex]x=4[/tex]. Recall that

[tex]f'(a) = \displaystyle \lim_{x\to a} \frac{f(x) - f(a)}{x - a}[/tex]

By the chain rule,

[tex](f\circ g)'(4) = f'(g(4)) \times g'(4) = f'(4) \times g'(4) = 3\times7 = \boxed{21}[/tex]

Since [tex]g'(4)[/tex] exists, [tex]g[/tex] is differentiable at [tex]x=4[/tex] so it must be continuous.

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE