Respuesta :

If Sa=2πrh+2π[tex]r^{2}[/tex]v=π[tex]r^{2}h[/tex] then the surface area is π[tex]r^{2} h[/tex] and volume is

(rh-2h)/2r.

Given Sa=2πrh+2π[tex]r^{2} v[/tex]=π[tex]r^{2}h[/tex].

We have to find surface area and volume from the given expression.

Volume is basically amount of substance a container can hold in its capacity.

First we will find the value of v from the expression. Because they are in equal to each other, we can easily find the value of v.

2πrh+2π[tex]r^{2}[/tex]v=π[tex]r^{2}[/tex]h

Keeping the term containing v at left side and take all other to right side.

2π[tex]r^{2}[/tex]v=π[tex]r^{2}h[/tex]-2πrh

v=(π[tex]r^{2}[/tex]h-2πrh)/2π[tex]r^{2}[/tex]

v=π[tex]r^{2} h[/tex]/2π[tex]r^{2}[/tex]-2πrh/2π[tex]r^{2}[/tex]

v=h/2-h/r

v=h(r-2)/2r

Put the value of v in Sa=2πrh+2π[tex]r^{2} v[/tex]

Sa=2πrh+2π[tex]r^{2}[/tex]*h(r-2)/2r

=2πrh+2πrh(r-2)/2

=2πrh+πrh(r-2)

=2πrh+π[tex]r^{2}[/tex]h-2πrh

=π[tex]r^{2}[/tex]h

Hence surface area is π[tex]r^{2}[/tex]h and volume is h(r-2)/2.

Learn more about surface area at https://brainly.com/question/16519513

#SPJ4

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE