Respuesta :

Equation of the parabola is [tex]y=\frac{1}{8} (x-7)^2[/tex] with a focus at [tex](7,2)[/tex] and a directrix at [tex]y=-2[/tex]

How to find the equation of parabola with focus and directrix ?

We know that focus of the parabola [tex](h,k+p)=(7,2)[/tex]

So [tex]k+p=2[/tex]......(a)

And directrix of the parabola

[tex]y=k-p\\=-2[/tex]

[tex]k-p=-2[/tex]........(b)

So add the equation (a) AND (b)

[tex]k+p=2\\k-p=-2\\------------\\2k=0\\k=0\\p=2[/tex]

Equation of the parabola with directrix and focus

[tex]y-k=\frac{1}{4p} (x-h)^2[/tex]

Substitute all the values

[tex]y-0=\frac{1}{4(2)} (x-7)^2\\y=\frac{1}{8} (x-7)^2[/tex]

Learn more about the equation of the parabola here:

https://brainly.com/question/28048848

#SPJ4

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE