Respuesta :

Step-by-step explanation:

[tex]f(x) = ln( \frac{1}{x} ) [/tex]

To find the derivative, notice we have a function 1/x inside of another function, ln(x)

We use what we call the chain rule,

It states that

derivative of a '

[tex] \frac{d}{dx} f(g(x)) = f '(g(x)) \times \: g '(x)[/tex]

Here f is ln(x)

f is 1/x

So first, we know that

[tex] \frac{d}{dx} ( ln(x) = \frac{1}{x} [/tex]

so

[tex]f'(g(x)) = \frac{1}{ \frac{1}{x} } [/tex]

We know that

[tex]g'(x) = - \frac{1}{ {x}^{2} } [/tex]

So we have

[tex]x \times - \frac{1}{ {x}^{2} } = \frac{ - 1}{x} [/tex]

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE