Respuesta :

Answer:

6

Step-by-step explanation:

[tex]\frac{y}{2} =x^{2} -7[/tex]

[tex]\frac{a}{2} =2^{2} -7[/tex]

[tex]\frac{a}{2} =-3[/tex]

[tex]a=-6[/tex]

[tex]\frac{b}{2} =1^{2} -7[/tex]

[tex]\frac{b}{2} =-6[/tex]

[tex]b=-12[/tex]

From the calculations above, we learn that line l and the curve intersect at (2, -6) and (1, -12). Next, we will set up a system of linear equations to solve for the slope and the y-intercept of line l.

[tex]-6=2m+b[/tex]        

[tex]-12=m+b[/tex]

[tex]-24=2m+2b[/tex]

[tex]18=-b[/tex]

[tex]b=-18[/tex]

[tex]-12=m-18[/tex]

[tex]m=6[/tex]

Therefore, the slope of line l is 6.

Answer:

slope = 6

Step-by-step explanation:

substitute the given points into the equation of the curve to find a and b

(2, a )

[tex]\frac{a}{2}[/tex] = 2² - 7 = 4 - 7 = - 3 ( multiply both sides by 2 to clear the fraction )

a = - 6

then point (2, a ) = (2, - 6 )

(1, b )

[tex]\frac{b}{2}[/tex] = 1² - 7 = 1 - 7 = - 6 ( multiply both sides by 2 )

b = - 12

then point (1, b ) = (1, - 12 )

calculate the slope m using the slope formula

m = [tex]\frac{y_{2}-y_{1} }{x_{2}-x_{1} }[/tex]

with (x₁, y₁ ) = (2, - 6 ) and (x₂, y₂ ) = (1, - 12 )

m = [tex]\frac{-12-(-6)}{1-2}[/tex] = [tex]\frac{-12+6}{-1}[/tex] = [tex]\frac{-6}{-1}[/tex] = 6

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE