Answer this please !

Answer:
6
Step-by-step explanation:
[tex]\frac{y}{2} =x^{2} -7[/tex]
[tex]\frac{a}{2} =2^{2} -7[/tex]
[tex]\frac{a}{2} =-3[/tex]
[tex]a=-6[/tex]
[tex]\frac{b}{2} =1^{2} -7[/tex]
[tex]\frac{b}{2} =-6[/tex]
[tex]b=-12[/tex]
From the calculations above, we learn that line l and the curve intersect at (2, -6) and (1, -12). Next, we will set up a system of linear equations to solve for the slope and the y-intercept of line l.
[tex]-6=2m+b[/tex]
[tex]-12=m+b[/tex]
[tex]-24=2m+2b[/tex]
[tex]18=-b[/tex]
[tex]b=-18[/tex]
[tex]-12=m-18[/tex]
[tex]m=6[/tex]
Therefore, the slope of line l is 6.
Answer:
slope = 6
Step-by-step explanation:
substitute the given points into the equation of the curve to find a and b
(2, a )
[tex]\frac{a}{2}[/tex] = 2² - 7 = 4 - 7 = - 3 ( multiply both sides by 2 to clear the fraction )
a = - 6
then point (2, a ) = (2, - 6 )
(1, b )
[tex]\frac{b}{2}[/tex] = 1² - 7 = 1 - 7 = - 6 ( multiply both sides by 2 )
b = - 12
then point (1, b ) = (1, - 12 )
calculate the slope m using the slope formula
m = [tex]\frac{y_{2}-y_{1} }{x_{2}-x_{1} }[/tex]
with (x₁, y₁ ) = (2, - 6 ) and (x₂, y₂ ) = (1, - 12 )
m = [tex]\frac{-12-(-6)}{1-2}[/tex] = [tex]\frac{-12+6}{-1}[/tex] = [tex]\frac{-6}{-1}[/tex] = 6