Write the standard form of the equation of the line trough the given point with the given slope.

Step-by-step explanation:
we use the point-slope approach :
y - y1 = m(x - x1)
m is the slope, and (x1, y1) is a point on the line.
so,
1.
y - 2 = 7(x - 1) = 7x - 7
y = 7x - 5
2.
y - -1 = -1×(x - 3) = -x + 3
y + 1 = -x + 3
y = -x + 2
3.
y - 5 = -4(x - -2) = -4x - 8 (3x a "-" is a "-" for 8)
y = -4x - 3
4.
y - 5 = 5/3 × (x - 3) = 5x/3 - 5
y = 5x/3 or 5/3 × x
Answer:
1. [tex]7x-y=5[/tex]
2. [tex]x+y=2[/tex]
3. [tex]4x+y=-3[/tex]
4. [tex]5x-3y=0[/tex]
Step-by-step explanation:
Since we already know the slope and the coordinates of one point, first use the point-slope form to create an equation.
[tex]y-k=m(x-h)[/tex]
[tex]y-2=7(x-1)[/tex]
[tex]y-2=7x-7[/tex]
[tex]7x-y=5[/tex]
[tex]y+1=-1(x-3)[/tex]
[tex]y+1=-x+3[/tex]
[tex]x+y=2[/tex]
[tex]y-5=-4(x+2)[/tex]
[tex]y-5=-4x-8[/tex]
[tex]4x+y=-3[/tex]
[tex]y-5=\frac{5}{3} (x-3)[/tex]
[tex]y-5=\frac{5}{3}x-5[/tex]
[tex]3y-15=5x-15[/tex]
[tex]5x-3y=0[/tex]