Respuesta :

Answer:  [tex]\displaystyle \boldsymbol{-\frac{1}{2}}[/tex]

================================================

Work Shown:

[tex]\displaystyle L = \lim_{\text{x}\to 1^{+}} \frac{1-\text{x}}{\text{x}^2-1}\\\\\\\displaystyle L = \lim_{\text{x}\to 1^{+}} \frac{-(\text{x}-1)}{(\text{x}-1)(\text{x}+1)}\\\\\\\displaystyle L = \lim_{\text{x}\to 1^{+}} \frac{-1}{\text{x}+1}\\\\\\\displaystyle L = \frac{-1}{1+1}\\\\\\\displaystyle L = -\frac{1}{2}\\\\\\[/tex]

In the second step, I used the difference of squares rule to factor.

The (x-1) terms cancel which allows us to plug in x = 1. We plug this value in because x is approaching 1 from the right side.

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE