Respuesta :

There are four solutions for the trigonometric equation 2 · cos x = 4 · cos x · sin² x are x₁ = π/4 ± 2π · i, x₂ = 3π/4 ± 2π · i, x₃ = 5π/4 ± 2π · i and x₄ = 7π/4 ± 2π · i, [tex]i \in \mathbb{N}_{O}[/tex].

How to solve a trigonometric equation

In this problem we must simplify the trigonometric equation by both algebraic and trigonometric means and clear the variable x:

2 · cos x = 4 · cos x · sin² x

2 · sin² x = 1

sin² x = 1/2

sin x = ± √2 /2

There are several solutions:

x₁ = π/4 ± 2π · i, [tex]i \in \mathbb{N}_{O}[/tex]

x₂ = 3π/4 ± 2π · i, [tex]i \in \mathbb{N}_{O}[/tex]

x₃ = 5π/4 ± 2π · i, [tex]i \in \mathbb{N}_{O}[/tex]

x₄ = 7π/4 ± 2π · i, [tex]i \in \mathbb{N}_{O}[/tex]

There are four solutions for the trigonometric equation 2 · cos x = 4 · cos x · sin² x are x₁ = π/4 ± 2π · i, x₂ = 3π/4 ± 2π · i, x₃ = 5π/4 ± 2π · i and x₄ = 7π/4 ± 2π · i, [tex]i \in \mathbb{N}_{O}[/tex].

To learn more on trigonometric equations: https://brainly.com/question/27821667

#SPJ1

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE