Respuesta :

  • (6x/-7)(4/-9x)
  • 24x/63x
  • 24/63

cancel by 3

  • 8/21

Answer:

[tex]\sf \dfrac{8}{21}[/tex]

Step-by-step explanation:

Given expression:

[tex]\sf \dfrac{6x}{-7} \cdot \dfrac{4}{-9x}[/tex]

When multiplying fractions, simply multiply the numerators and multiply the denominators:

[tex]\implies \sf \dfrac{6x}{-7} \cdot \dfrac{4}{-9x} = \dfrac{6x \cdot 4}{-7 \cdot -9x} =\dfrac{24x}{63x}[/tex]

Cancel the common factor x:

[tex]\implies \sf \dfrac{24 \diagup\!\!\!\!x}{63 \diagup\!\!\!\!x}=\dfrac{24}{63}[/tex]

Rewrite 24 as 3 · 8 and rewrite 63 as 3 · 21:

[tex]\implies \sf \dfrac{24}{63}=\dfrac{3 \cdot 8}{3 \cdot 21}[/tex]

Cancel the common factor 3:

[tex]\implies \sf \dfrac{\diagup\!\!\!\!\!3 \cdot 8}{\diagup\!\!\!\!\!3 \cdot 21}=\dfrac{8}{21}[/tex]

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE