Respuesta :

#1

  • (11)_2
  • (1×2⁰+1×2¹)_10
  • (1(1)+1(2))_10
  • (1+2)_10
  • (3)_10

#b

  • (110)_2
  • (0+1×2¹+1×2²)_10
  • (2+4)_10
  • (6)_10

#c

  • (111)_2
  • (1×2⁰+1×2¹+1×2²)_10
  • (1+2+4)_10
  • (7)_10

#f

  • (10011)_2
  • (1×2⁰+1×2¹+0+0+1×2⁴)_10
  • (1+2+16)_10
  • (19)_10

#i

  • (10110101)_2
  • (1×2⁰+0+1×2²+0+1×2⁴+1×2⁵+0+1×2⁷)_10
  • (1+4+16+32+128)_10
  • (181)_10

Answer:

a) 3₁₀

b) 6₁₀

c) 7₁₀

f) 19₁₀

i) 181₁₀

Step-by-step explanation:

Binary to Decimal Conversion (Positional Notation Method)

  • Multiply each digit by the base (2) raised to the power dependent upon the position of that digit in the binary number.
  • Sum all the values obtained for each digit.
  • Express the number as a decimal number by placing subscript 10 after it.

For a binary number with 'n' digits:

  • The right-most digit is multiplied by 2⁰
  • The left-most digit is multiplied by [tex]\sf 2^{n-1}[/tex]

For example, to convert the binary number 111001₂ into a decimal:

[tex]\begin{array}{ c c c c c c}1 & 1 & 1 & 0 & 0 & 1\\\downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\2^5 & 2^4 & 2^3 & 2^2 & 2^1 & 2^0\\\end{array}[/tex]

Multiply each digit by the base (2) raised to the power as indicated above and sum them:

[tex]=(1 \times 2^5)+(1 \times 2^4)+(1 \times 2^3)+(0 \times 2^2)+(0 \times 2^1)+(1 \times 2^0)[/tex]

[tex]= 32+16+8+0+0+1[/tex]

[tex]= 57[/tex]

Finally, express as a decimal number ⇒ 111001₂ = 57₁₀

Question (a)

[tex]\begin{aligned}\implies 11_2 & = (1 \times 2^1)+(1 \times 2^0)\\& = 2+1\\& = 3\end{aligned}[/tex]

Therefore, 11₂ = 3₁₀

Question (b)

[tex]\begin{aligned}\implies 110_2 & = (1 \times 2^2)+(1 \times 2^1)+(0 \times 2^0)\\& = 4+2+0\\& = 6\end{aligned}[/tex]

Therefore, 110₂ = 6₁₀

Question (c)

[tex]\begin{aligned}\implies 111_2 & = (1 \times 2^2) +(1 \times 2^1)+(1 \times 2^0)\\& =4+2+1\\& = 7\end{aligned}[/tex]

Therefore, 111₂ = 7₁₀

Question (f)

[tex]\begin{aligned}\implies 10011_2 & =(1 \times 2^4)+(0 \times 2^3)+ (0 \times 2^2) +(1 \times 2^1)+(1 \times 2^0)\\& =16+0+0+2+1\\& = 19\end{aligned}[/tex]

Therefore, 10011₂ = 19₁₀

Question (i)

[tex]\phantom{)))}10110101_2 \\\\=(1 \times 2^7)+(0 \times 2^6)+(1 \times 2^5)+(1 \times 2^4)+(0 \times 2^3)+ (1 \times 2^2) +(0 \times 2^1)+(1 \times 2^0)\\\\=128+0+32+16+0+4+0+1\\\\= 181[/tex]

Therefore, 10110101₂ = 181₁₀

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE