1
Which expression is equivalent to [log9+ logx+log(x²+4)]-log6?
og 3√x (x² + 4)
2
O log-
3√√x (3x+4)
2
O log-
√9x(x³+4)
6
O log-
log9x(x³+4)
6

Respuesta :

The equivalent expression to the given logarithm without tables is [tex]\mathbf{ =log_{10} (\dfrac{3x(x^2+4)}{2})}[/tex]. Option A is correct.

What are equivalent expressions?

Equivalent expressions are expressions that differ in appearance but when a value is being replaced for their unknown variable, gives an equivalent result.

From the given information:

[tex]\mathbf{(log_{10}(9)+log_{10}(x) + log_{10}(x^2+4) )-log_{10} (6) }[/tex]

[tex]\mathbf{=log_{10}(9)+log_{10}(x) + log_{10}(x^2+4) -log_{10} (6) }[/tex]

[tex]\mathbf{=log_{10}(9x)+ log_{10}(x^2+4) -log_{10} (6) }[/tex]

[tex]\mathbf{=log_{10}(9x(x^2+4)) -log_{10} (6) }[/tex]

Apply log rule: [tex]\mathbf{log_a(x)-log_a(y) =log_a(\dfrac{x}{y})}[/tex]

[tex]\mathbf{=log_{10}(9x(x^2+4)) -log_{10} (6) =log_{10} (\dfrac{9x(x^2+4)}{6})}[/tex]

[tex]\mathbf{ =log_{10} (\dfrac{9x(x^2+4)}{6})}[/tex]

[tex]\mathbf{ =log_{10} (\dfrac{3x(x^2+4)}{2})}[/tex]


Learn more about equivalent expressions here:

https://brainly.com/question/24734894

#SPJ1

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE