For all real numbers , a,b and c, if a>b and c>0, then a-c ___b-c

-------------------------------------------------------------------------------------------------------------
Answer: [tex]\textsf{a - c } > \textsf{ b - c}[/tex]
-------------------------------------------------------------------------------------------------------------
Given: [tex]\textsf{a} > \textsf{b and c} > \textsf{0}[/tex]
Find: [tex]\textsf{a - c } \_\_\_ \textsf{ b - c}[/tex]
Solution: Since we know that a is greater than b this means that no matter if we subtract or add a constant to both sides a would stay greater than b. Therefore, this would give us the expression of a - c > b - c.