Answer:
$9,347.62
Step-by-step explanation:
Compound Interest Formula
[tex]\large \text{$ \sf A=P(1+\frac{r}{n})^{nt} $}[/tex]
where:
Given:
Substituting the given values into the formula and solving for A:
[tex]\implies \sf A=6500\left(1+\frac{0.037}{1}\right)^{10 \times 1}[/tex]
[tex]\implies \sf A=6500\left(1.037\right)^{10}[/tex]
[tex]\implies \sf A=9347.617232[/tex]
Therefore, the value of account after 10 years is $9,347.62
Let's see
[tex]\\ \rm\Rrightarrow A=P(1+r)^t[/tex]
So
A:-
[tex]\\ \rm\Rrightarrow 6500(1+0.037)^{10}[/tex]
[tex]\\ \rm\Rrightarrow 6500(1.037)^{10}[/tex]
[tex]\\ \rm\Rrightarrow \$ 9347.6[/tex]