Respuesta :

Check the picture below.

[tex]\textit{area of a regular polygon}\\\\ A=\cfrac{1}{2}asn ~~ \begin{cases} a=apothem\\ n=\stackrel{side's}{number}\\ s=\stackrel{side's}{length}\\[-0.5em] \hrulefill\\ a=7\\ s=8.1\\ n=6 \end{cases}\implies \stackrel{\textit{area of the hexagonal base}}{A=\cfrac{1}{2}(7)(8.1)(6)} \\\\[-0.35em] ~\dotfill[/tex]

[tex]\textit{volume of a prism}\\\\ V=Bh ~~ \begin{cases} B=\stackrel{base's}{area}\\ h=height\\[-0.5em] \hrulefill\\ B=\frac{1}{2}(7)(8.1)(6)\\ V=3572.1 \end{cases}\implies 3572.1=\cfrac{1}{2}(7)(8.1)(6)h \\\\\\ 3572.1=170.1h\implies \cfrac{3572.1}{170.1}=h\implies \boxed{21=h}[/tex]

well, the length of the tunnel is "h", now two 8 meters cars, that's 8+8=16 meters plus a 3 meter connector between them, that's 16 + 3 = 19 meters, can those two cars connected like so fit inside the tunnel? sure thing, "h" can fit 19 meters just fine.

Ver imagen jdoe0001
ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE