Respuesta :

[tex]\\ \rm\Rrightarrow \dfrac{(11^6.6^9)^2}{11^3}[/tex]

[tex]\\ \rm\Rrightarrow \dfrac{11^{6(2)}.6^{9(2)}}{11^3}[/tex]

[tex]\\ \rm\Rrightarrow \dfrac{11^{12}.6^{18}}{11^3}[/tex]

[tex]\\ \rm\Rrightarrow \dfrac{11^{12-3}6^{18}}{}[/tex]

[tex]\\ \rm\Rrightarrow 11^96^{18}[/tex]

Answer:

B

Step-by-step explanation:

[tex]\sf Given \: expression\: :\dfrac{(11^6 \cdot 6^9)^2}{11^3}[/tex]

[tex]\sf Apply\:exponent\:rule\quad (a^b)^c=a^{bc} :[/tex]

[tex]\sf \implies \dfrac{11^{6 \times 2} \cdot 6^{9\times2}}{11^3}[/tex]

[tex]\sf \implies \dfrac{11^{12} \cdot 6^{18}}{11^3}[/tex]

[tex]\sf \implies \dfrac{11^{12}}{11^3} \cdot 6^{18}[/tex]

[tex]\sf Apply\:exponent\:rule\quad \dfrac{a^b}{a^c}=a^{b-c} :[/tex]

[tex]\sf \implies 11^{12-3} \cdot 6^{18}[/tex]

[tex]\sf \implies 11^{9} \cdot 6^{18}[/tex]

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE