Respuesta :

Answer:

y = [tex]\frac{\pi}{3}[/tex]

Step-by-step explanation:

using the addition formula for sine

sin(x + y) = sinxcosy + cosxsiny

then

sinxcosy + cosxsiny = [tex]\frac{1}{2}[/tex] sinx + [tex]\frac{\sqrt{3} }{2}[/tex] cosx

for the 2 sides to be equal , then

cosy = [tex]\frac{1}{2}[/tex] and siny = [tex]\frac{\sqrt{3} }{2}[/tex]

then

y = [tex]cos^{-1}[/tex] ([tex]\frac{1}{2}[/tex] ) = [tex]\frac{\pi }{3}[/tex]

and

y = [tex]sin^{-1}[/tex] ( [tex]\frac{\sqrt{3} }{2}[/tex] ) = [tex]\frac{\pi }{3}[/tex]

thus y = [tex]\frac{\pi }{3}[/tex]

[tex]\\ \rm\Rrightarrow sin(x+y)=\dfrac{1}{2}sinx+\dfrac{\sqrt{3}}{2}cosx[/tex]

[tex]\\ \rm\Rrightarrow sinxcosy+cosxsiny=\dfrac{1}{2}sinx+\dfrac{\sqrt{3}}{2}cosx[/tex]

  • Cancel sin and cos

[tex]\\ \rm\Rrightarrow cosy+siny=\dfrac{1}{2}+\dfrac{\sqrt{3}}{2}[/tex]

[tex]\\ \rm\Rrightarrow cos\dfrac{\pi}{3}+sin\dfrac{\pi}{3}=\dfrac{1}{2}+\dfrac{\sqrt{3}}{2}[/tex]

  • y=π/3

Option B

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE