Respuesta :

If [tex]f^{-1}(x)[/tex] is the inverse of [tex]f(x)[/tex], then by definition

[tex]f\left(f^{-1}(x)\right) = x[/tex]

so that

[tex]2 \times 3^{f^{-1}(x)} = x[/tex]

Solve for [tex]f^{-1}(x)[/tex] :

[tex]3^{f^{-1}(x)} = \dfrac x2[/tex]

[tex]\log_3\left(3^{f^{-1}(x)}\right) = \log_3\left(\dfrac x2\right)[/tex]

[tex]f^{-1}(x) \log_3(3) = \log_3\left(\dfrac x2\right)[/tex]

[tex]\boxed{f^{-1}(x) = \log_3\left(\dfrac x2\right)}[/tex]

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE