Which expressions are equivalent to ? Choose all the correct answers. Show your work.

Answer:
C, D, F
Step-by-step explanation:
Exponent rules:
[tex]\dfrac{a^b}{a^c}=a^{b-c}[/tex]
[tex]a^{-n}=\dfrac{1}{a^n}[/tex]
[tex]\dfrac{1}{a^{-n}}=a^n[/tex]
[tex]a^n \cdot b^n=(ab)^n[/tex]
[tex]a^0=1[/tex]
[tex](a^b)^c=a^{bc}[/tex]
[tex]\textsf{A}\quad\dfrac{24^{-3}}{24^{-4}}=24^{-3-(-4)}=24^1=24[/tex]
[tex]\textsf{B}\quad3^{-2} \cdot 8^{-5}=\dfrac{1}{3^2} \cdot \dfrac{1}{8^5}=\dfrac{1}{9} \cdot \dfrac{1}{32768}=\dfrac{1}{294912}[/tex]
[tex]\textsf{C}\quad\left(\dfrac{1}{24^{-7}}\right)^{-1}=\left(24^7\right)^{-1}=24^{-7}[/tex]
[tex]\textsf{D}\quad\dfrac{8^{-7}}{3^7}=\dfrac{1}{8^7 \cdot 3^7}=\dfrac{1}{(8 \cdot 3)^7}=\dfrac{1}{24^7}=24^{-7}[/tex]
[tex]\textsf{E}\quad24^7 \cdot 24^0=24^7 \cdot 1=24^7[/tex]
[tex]\textsf{F}\quad(24^3 \cdot 24^4)^{-1}=\left(24^{3+4}\right)^{-1}=(24^7)^{-1}=24^{-7}[/tex]