Cone details:
Sphere details:
================
From the endpoints (EO, UO) of the circle to the center of the circle (O), the radius is will be always the same.
Using Pythagoras Theorem
(a)
TO² + TU² = OU²
(h-10)² + r² = 10² [insert values]
r² = 10² - (h-10)² [change sides]
r² = 100 - (h² -20h + 100) [expand]
r² = 100 - h² + 20h -100 [simplify]
r² = 20h - h² [shown]
r = √20h - h² ["r" in terms of "h"]
(b)
volume of cone = 1/3 * π * r² * h
===========================
[tex]\longrightarrow \sf V = \dfrac{1}{3} * \pi * (\sqrt{20h - h^2})^2 \ ( h)[/tex]
[tex]\longrightarrow \sf V = \dfrac{1}{3} * \pi * (20h - h^2) (h)[/tex]
[tex]\longrightarrow \sf V = \dfrac{1}{3} * \pi * (20 - h) (h) ( h)[/tex]
[tex]\longrightarrow \sf V = \dfrac{1}{3} \pi h^2(20-h)[/tex]
To find maximum/minimum, we have to find first derivative.
(c)
First derivative
[tex]\Longrightarrow \sf V' =\dfrac{d}{dx} ( \dfrac{1}{3} \pi h^2(20-h) )[/tex]
apply chain rule
[tex]\sf \Longrightarrow V'=\dfrac{\pi \left(40h-3h^2\right)}{3}[/tex]
Equate the first derivative to zero, that is V'(x) = 0
[tex]\Longrightarrow \sf \dfrac{\pi \left(40h-3h^2\right)}{3}=0[/tex]
[tex]\Longrightarrow \sf 40h-3h^2=0[/tex]
[tex]\Longrightarrow \sf h(40-3h)=0[/tex]
[tex]\Longrightarrow \sf h=0, \ 40-3h=0[/tex]
[tex]\Longrightarrow \sf h=0,\:h=\dfrac{40}{3}[/tex]
maximum volume: when h = 40/3
[tex]\sf \Longrightarrow max= \dfrac{1}{3} \pi (\dfrac{40}{3} )^2(20-\dfrac{40}{3} )[/tex]
[tex]\sf \Longrightarrow maximum= 1241.123 \ cm^3[/tex]
minimum volume: when h = 0
[tex]\sf \Longrightarrow min= \dfrac{1}{3} \pi (0)^2(20-0)[/tex]
[tex]\sf \Longrightarrow minimum=0 \ cm^3[/tex]