Respuesta :

Answer:

[tex]\boxed{\tt (6,-7)}[/tex]

Step-by-step explanation:

[tex]\tt 4x + 2y = 10\\x - y = 13[/tex]

First Let's solve for x in x-y=13

[tex]\tt x-y=13[/tex]

Add y to both sides:

[tex]\tt x=13+y[/tex]

Now, Substitute x=13+y into 4x+2y=10:-

Let x=13+y

[tex]\tt 4(13+y)+2y=10[/tex]

[tex]\tt 52+6y=10[/tex]

Now, let's solve for y in 52+6y=10:-

[tex]\tt 52+6y=10[/tex]

Subtract 52 from both sides:-

[tex]\tt 6y=10-52[/tex]

[tex]\tt 6y=-42[/tex]

Divide both sides by 6:-

[tex]\tt \cfrac{6y}{6} =\cfrac{-42}{6}[/tex]

[tex]\boxed{\tt y=-7}[/tex]

Now, we'll Substitute y=-7 into to x=13+y to find "x":-

[tex]\tt x=13+y[/tex]

[tex]\tt x=13+-7[/tex]

[tex]\boxed{\tt x=6}[/tex]

___

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE