Answer:
[tex]\boxed{\tt (6,-7)}[/tex]
Step-by-step explanation:
[tex]\tt 4x + 2y = 10\\x - y = 13[/tex]
First Let's solve for x in x-y=13
[tex]\tt x-y=13[/tex]
Add y to both sides:
[tex]\tt x=13+y[/tex]
Now, Substitute x=13+y into 4x+2y=10:-
Let x=13+y
[tex]\tt 4(13+y)+2y=10[/tex]
[tex]\tt 52+6y=10[/tex]
Now, let's solve for y in 52+6y=10:-
[tex]\tt 52+6y=10[/tex]
Subtract 52 from both sides:-
[tex]\tt 6y=10-52[/tex]
[tex]\tt 6y=-42[/tex]
Divide both sides by 6:-
[tex]\tt \cfrac{6y}{6} =\cfrac{-42}{6}[/tex]
[tex]\boxed{\tt y=-7}[/tex]
Now, we'll Substitute y=-7 into to x=13+y to find "x":-
[tex]\tt x=13+y[/tex]
[tex]\tt x=13+-7[/tex]
[tex]\boxed{\tt x=6}[/tex]
___