Respuesta :

Answer:

[tex]\tan(X)=\dfrac{77}{36}[/tex]

Step-by-step explanation:

First we need to find the length of side WX.

To do this, use Pythagoras' Theorem:  [tex]a^2+b^2=c^2[/tex]

(where a and b are the legs, and c is the hypotenuse, of a right triangle)

[tex]\implies WX^2+77^2=85^2[/tex]

[tex]\implies WX^2=85^2-77^2[/tex]

[tex]\implies WX=\sqrt{85^2-77^2}[/tex]

[tex]\implies WX=36[/tex]

Now use the Tan trig ratio:

[tex]\tan(x)=\sf \dfrac{O}{A}[/tex]

where:

  • [tex]x[/tex] is the angle
  • O is the side opposite the angle
  • A is the side adjacent the angle

From inspection of the triangle,

  • [tex]x[/tex] = ∠X
  • O = 77
  • A = WX = 36

Substituting these values into the tan trig formula:

[tex]\implies \tan(X)=\dfrac{77}{36}[/tex]

Therefore, the tangent of ∠X is [tex]\dfrac{77}{36}[/tex]

Answer:

77 / 36

Step-by-step explanation:

Finding the adjacent side

  • WX² = VX² - VW² [Pythagorean Theorem]
  • WX² = (85)² - (77)²
  • WX² = 7225 - 2929
  • WX = √1296
  • WX = 36

Tangent of ∠X

  • Opposite side / Adjacent side
  • WX / VW
  • 77 / 36
ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE