Answer:
Step-by-step explanation:
In the question we have given volume of Sphere that is 562.5 π in³ and we have asked to find the radius of given sphere. We know that the volume of sphere ,
[tex] \blue{ \boxed{ \rm{Volume \: of \: Sphere = \frac{4}{3} \pi r {}^{3} }}}[/tex]
So equating it with given volume for finding the radius of sphere :
[tex] \longmapsto \: \frac{4}{3} \pi r{}^{3} = 562.5\pi[/tex]
Step 1 : Cancelling π as it was present in both side :
[tex]\longmapsto\:\frac{4}{3} \cancel{\pi }r{}^{3} = 562.5 \cancel{\pi}[/tex]
Step 2 : Transposing 4/3 to right hand side :
[tex]\longmapsto \: r {}^{3} = 562.5 \times \frac{3}{4} [/tex]
Step 3 : Multiplying 562.5 with 3 :
[tex]\longmapsto \:r {}^{3} = \frac{1687.5}{4} [/tex]
Step 4 : Dividing 1687.5 by 4 :
[tex]\longmapsto \:r {}^{3} = 421.875[/tex]
Step 5 : Finding cube root of 421.875
[tex]\longmapsto \:r = \sqrt[3]{421.875} [/tex]
Step 6 : We get :
[tex]\longmapsto \: \red{ \boxed{r = 7.5}}[/tex]