Which rules of exponents will be used to evaluate this expression? select three options. startfraction left-brace (negative 8) superscript 4 baseline right-brace superscript negative 5 baseline over (negative 8) superscript 6 baseline endfraction fractional exponent quotient of powers power of a power power of a product negative exponent zero exponent

Respuesta :

The 3 rules that we need to use to simplify the expression are:

  • Exponent of an exponent rule.
  • Quotient of powers.
  • Negative exponent.

Which rule of exponents must we use?

As I understand, the expression that we have is:

[tex]\frac{((-8)^4)^{-5}}{(-8)^6}[/tex]

The first rule we need to use, is the exponent of an exponent rule, it says that:

[tex](a^n)^m = a^{n*m}[/tex]

If we apply that to the denominator, we get:

[tex]\frac{((-8)^4)^{-5}}{(-8)^6} = \frac{(-8)^{-20}}{(-8)^6}[/tex]

Now we need to use the quotient of powers:

[tex]\frac{a^m}{a^n} = a^{m - n}[/tex]

Using that we get:

[tex]\frac{((-8)^4)^{-5}}{(-8)^6} = \frac{(-8)^{-20}}{(-8)^6} = (-8)^{-20 - 6} = (-8)^{-26}[/tex]

Finally, we use the rule for a negative exponent:

[tex]a^{-n} = \frac{1}{a^n}[/tex]

So we get the simplified form:

[tex]\frac{((-8)^4)^{-5}}{(-8)^6} = \frac{(-8)^{-20}}{(-8)^6} = (-8)^{-26} = \frac{1}{(-8)^{26}}[/tex]

If you want to learn more about exponents, you can read:

https://brainly.com/question/8952483

Answer:

B, C, and E

Step-by-step explanation:

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE