Interval 0 to 10.5 f(x) dx = 9, interval 0 to 3.5 f(x) dx = 2, and interval 7 to 10.5 f(x) dx = 3, how do I find interval 3.5 to 7 (5f(x)-3) dx?

a. The value of the definite integral [tex]\int\limits^7_{3.5} {f(x)} \, dx = - 1[/tex]
b. The value of the definite integral [tex]\int\limits^7_{3.5} (5{f(x)} - 3)\, dx = -18.5[/tex]
To answer the question, we need to know what definite integrals are.
These are integrals which are evaluated between two values of the variable.
[tex]\int\limits^7_{3.5} {f(x)} \, dx = - 1[/tex]
Given that [tex]\int\limits^{10.5}_0 {f(x)} \, dx = 9, \int\limits^{3.5}_0 {f(x)} \, dx = 7 and \int\limits^{10.5}_7 {f(x)} \, dx = 3[/tex]
We require [tex]\int\limits^7_{3.5} {f(x)} \, dx[/tex]
So, [tex]\int\limits^{10.5}_0 {f(x)} \, dx = \int\limits^{3.5}_0 {f(x)} \, dx + \int\limits^7_{3.5} {f(x)} \, dx + \int\limits^{10.5}_7 {f(x)} \,dx[/tex]
So, [tex]\int\limits^7_{3.5} {f(x)} \, dx = \int\limits^{10.5}_0 {f(x)} \, dx - \int\limits^{3.5}_0 {f(x)} \, dx - \int\limits^{10.5}_7 {f(x)} \,dx[/tex]
Substituting the values of the variables into the equation, we have
So, [tex]\int\limits^7_{3.5} {f(x)} \, dx = \int\limits^{10.5}_0 {f(x)} \, dx - \int\limits^{3.5}_0 {f(x)} \, dx - \int\limits^{10.5}_7 {f(x)} \,dx[/tex]
[tex]\int\limits^7_{3.5} {f(x)} \, dx = 9 - 7 - 3\\\int\limits^7_{3.5} {f(x)} \, dx = 2 - 3\\\int\limits^7_{3.5} {f(x)} \, dx = - 1[/tex]
So, [tex]\int\limits^7_{3.5} {f(x)} \, dx = - 1[/tex]
[tex]\int\limits^7_{3.5} (5{f(x)} - 3)\, dx = -18.5[/tex]
[tex]\int\limits^7_{3.5} (5{f(x)} - 3)\, dx = \int\limits^7_{3.5} 5{f(x)}\, dx - \int\limits^7_{3.5} 3\, dx\\\int\limits^7_{3.5} (5{f(x)} - 3)\, dx = 5\int\limits^7_{3.5} {f(x)}\, dx - 3(7.5 - 3)\\\int\limits^7_{3.5} (5{f(x)} - 3)\, dx= 5 X (-1 ) - 3 X 4.5 \\\int\limits^7_{3.5} (5{f(x)} - 3)\, dx= -5 - 13.5\\\int\limits^7_{3.5} (5{f(x)} - 3)\, dx = -18.5[/tex]
So, [tex]\int\limits^7_{3.5} (5{f(x)} - 3)\, dx = -18.5[/tex]
Learn more about definite integrals here:
https://brainly.com/question/17074932