Interval 0 to 10.5 f(x) dx = 9, interval 0 to 3.5 f(x) dx = 2, and interval 7 to 10.5 f(x) dx = 3, how do I find interval 3.5 to 7 (5f(x)-3) dx?

Interval 0 to 105 fx dx 9 interval 0 to 35 fx dx 2 and interval 7 to 105 fx dx 3 how do I find interval 35 to 7 5fx3 dx class=

Respuesta :

a. The value of the definite integral [tex]\int\limits^7_{3.5} {f(x)} \, dx = - 1[/tex]

b.  The value of the definite integral [tex]\int\limits^7_{3.5} (5{f(x)} - 3)\, dx = -18.5[/tex]

To answer the question, we need to know what definite integrals are.

What are definite integrals?

These are integrals which are evaluated between two values of the variable.

a. Integral of [tex]\int\limits^7_{3.5} {f(x)} \, dx[/tex]

[tex]\int\limits^7_{3.5} {f(x)} \, dx = - 1[/tex]

Given that [tex]\int\limits^{10.5}_0 {f(x)} \, dx = 9, \int\limits^{3.5}_0 {f(x)} \, dx = 7 and \int\limits^{10.5}_7 {f(x)} \, dx = 3[/tex]

We require  [tex]\int\limits^7_{3.5} {f(x)} \, dx[/tex]

So,  [tex]\int\limits^{10.5}_0 {f(x)} \, dx = \int\limits^{3.5}_0 {f(x)} \, dx + \int\limits^7_{3.5} {f(x)} \, dx + \int\limits^{10.5}_7 {f(x)} \,dx[/tex]

So,  [tex]\int\limits^7_{3.5} {f(x)} \, dx = \int\limits^{10.5}_0 {f(x)} \, dx - \int\limits^{3.5}_0 {f(x)} \, dx - \int\limits^{10.5}_7 {f(x)} \,dx[/tex]

Substituting the values of the variables into the equation, we have

So,  [tex]\int\limits^7_{3.5} {f(x)} \, dx = \int\limits^{10.5}_0 {f(x)} \, dx - \int\limits^{3.5}_0 {f(x)} \, dx - \int\limits^{10.5}_7 {f(x)} \,dx[/tex]

 [tex]\int\limits^7_{3.5} {f(x)} \, dx = 9 - 7 - 3\\\int\limits^7_{3.5} {f(x)} \, dx = 2 - 3\\\int\limits^7_{3.5} {f(x)} \, dx = - 1[/tex]

So, [tex]\int\limits^7_{3.5} {f(x)} \, dx = - 1[/tex]

b. Integral of [tex]\int\limits^7_{3.5} (5{f(x)} - 3)\, dx[/tex]

[tex]\int\limits^7_{3.5} (5{f(x)} - 3)\, dx = -18.5[/tex]

[tex]\int\limits^7_{3.5} (5{f(x)} - 3)\, dx = \int\limits^7_{3.5} 5{f(x)}\, dx - \int\limits^7_{3.5} 3\, dx\\\int\limits^7_{3.5} (5{f(x)} - 3)\, dx = 5\int\limits^7_{3.5} {f(x)}\, dx - 3(7.5 - 3)\\\int\limits^7_{3.5} (5{f(x)} - 3)\, dx= 5 X (-1 ) - 3 X 4.5 \\\int\limits^7_{3.5} (5{f(x)} - 3)\, dx= -5 - 13.5\\\int\limits^7_{3.5} (5{f(x)} - 3)\, dx = -18.5[/tex]

So,  [tex]\int\limits^7_{3.5} (5{f(x)} - 3)\, dx = -18.5[/tex]

Learn more about definite integrals here:

https://brainly.com/question/17074932

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE