Good people please help me!!!!

Answer:
a) |sec(θ)|
b) 2cot(2x)
Step-by-step explanation:
Trig identities are used to simplify these expressions. Several are used:
__
[tex]\sqrt{1-\tan(180^\circ-\theta)\cot(90^\circ-\theta)}=\sqrt{1-(-\tan(\theta))\tan(\theta)}\\\\=\sqrt{1+\tan^2(\theta)}=\sqrt{\sec^2(\theta)}=\boxed{|\sec(\theta)|}[/tex]
__
[tex]\dfrac{\cos(2x)\tan(x)}{\sin^2(x)}=\dfrac{\cos(2x)}{\sin^2(x)}\cdot\dfrac{\sin(x)}{\cos(x)}=\dfrac{\cos(2x)}{\sin(x)\cos(x)}\\\\=\dfrac{\cos(2x)}{\left(\dfrac{\sin(2x)}{2}\right)}=2\dfrac{\cos(2x)}{\sin(2x)}=\boxed{2\cot(2x)}[/tex]