Respuesta :

Ankit

Answer:

[tex]\sf factorisation\hookrightarrow \: (x- 4)(x - 5)[/tex]

Step-by-step explanation:

Given equation

[tex] \sf {x}^{2} - 9x + 20 [/tex]

Rules for factorisation,

distribute the middle term in such a way that constant of each term when multiplied outputs the last number.

The middle term -9x can be written as sum of -5x and -4x, and when we multiply -5 with -4 it turns+20.

rewriting equation,

[tex] \sf \hookrightarrow {x}^{2} - 5x - 4x + 20 \\ \sf \hookrightarrow x(x - 5) - 4(x - 5) \\ \sf \hookrightarrow \: (x- 4)(x - 5)[/tex]

[tex] \sf factorisation\hookrightarrow \: (x- 4)(x - 5)[/tex]

Thanks for joining brainly community!

Answer:

  • (x - 5)(x - 4)

[tex] \: [/tex]

Step-by-step explanation:

So, here we have to factorise the polynomial :

[tex]\\ \longrightarrow \sf \qquad {x}^{2} - 9x + 20\\ \\[/tex]

We are to find two numbers such that,

[tex]\\ {\longrightarrow \pmb{\sf {\qquad p + q = 9 \:}}} \\ \\[/tex]

[tex]\\ {\longrightarrow \pmb{\sf {\qquad p \times q = 20 \:}}} \\ \\[/tex]

The two numbers are 4 and 5, so

[tex]\\ \longrightarrow \sf \qquad {x}^{2} - 5x - 4x+ 20\\ \\[/tex]

Finding common factors :

[tex] \\ {\longrightarrow \pmb{\sf {\qquad {x} (x - 5) - 4(x - 5) \:}}} \\ \\[/tex]

[tex]{\longrightarrow \pmb{\sf {\qquad (x - 5) (x - 4) \:}}} \\ \\[/tex]

Some points to know :

  • Factorisation is the reverse process of multiplucation.

  • The Factorisation is the process of finding two or more expressions such that their product is the given expression

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE