Respuesta :
Answer :-
- Value of two integers are 22 and 24
Step-by-step explanation:
Given :-
- The product of 2 consecutive even integers is 528
To Find :-
- Value of each integers
Solution :-
- Let one integer be x
- other integer be x + 2
According to question,
- Product of two integers = 528
↠ (x)(x + 2) = 528
↠ x² + 2x = 528
↠ x² + 2x - 528 = 0
↠ x² + 24x - 22x - 528 = 0
↠ x(x + 24) - 22 (x + 24) = 0
↠ (x + 24) (x - 22) = 0
↠ x = -24 or 22
Hence,
- 1st integer = 22
- 2nd Integer = 22 + 2 = 24
Value of two integers are 22 and 24
Step-by-step explanation:
It is given that, The product of 2 consecutive even integers is 528 and we have to find the value of each integers.
- So, Let us assume the 1st consecutive even integer as y and the 2nd as (y + 2)
Now, As it is stated in the question that the product of 2 consecutive even integers is 528, So
[tex] \\ { \longrightarrow \qquad{ \pmb{ \sf { y(y + 2) = 528 }}}} \: \: \\ \\[/tex]
[tex]{ \longrightarrow \qquad{ \pmb{ \sf { {y}^{2} + 2y = 528 }}}} \: \: \\ \\[/tex]
Subtracting both sides by 528 we get :
[tex] \\ { \longrightarrow \qquad{ \pmb{ \sf { {y}^{2} + 2y - 528= 528 - 528 }}}} \: \: \\ \\[/tex]
[tex]{ \longrightarrow \qquad{ \pmb{ \sf { {y}^{2} + 2y - 528= 0 }}}} \: \: \\ \\[/tex]
We have to find two numbers such that,
[tex] \\ { \longrightarrow \qquad{ \pmb{ \sf { p + q= 24 }}}} \: \: \\ \\[/tex]
[tex]{ \longrightarrow \qquad{ \pmb{ \sf { p \times q= 528 }}}} \: \: \\ \\[/tex]
The two numbers are 24 and 22. So,
[tex] \\ { \longrightarrow \qquad{ \pmb{ \sf { {y}^{2} + (-22y) + 24y - 528= 0 }}}} \\ \\ [/tex]
[tex]{ \longrightarrow \qquad{ \pmb{ \sf { {y}(y -22) + 24(y - 22)= 0 }}}} \\ \\ [/tex]
[tex]{ \longrightarrow \qquad{ \pmb{ \sf { (y -22) (y + 24)= 0 }}}} \\ \\ [/tex]
- Whether, the value of y is (-24) or 22.
[tex] \: [/tex]
So, The first consecutive even integer is 22.
Now,
[tex] \\ { \longrightarrow \qquad{ \pmb{ \sf {Second \: consecutive \: even \: integer=y \:+2 \: }}}} \\ \\ [/tex]
[tex]{ \longrightarrow \qquad{ \pmb{ \sf {Second \: consecutive \: even \: integer=2 2+2 \: }}}} \\ \\ [/tex]
[tex]{ \longrightarrow \qquad{ \pmb{ \sf {Second \: consecutive \: even \: integer=24 }}}} \\ \\ [/tex]
Therefore,
- The value of each integer is 22 and 24.