Respuesta :

Answer:
Factor x^8+x^4+1

Rewrite the middle term.
X^8+2x^4.1-x^4+1

Rearrange terms.
x^8+2x^4.1+1 -x^4
Factor first three terms by perfect square rule
(X^4+1)^2-x^4
Rewrite
x^4
as
(X^2)^2
(X^4+1)-(x^2)^2
Since both terms are perfect squares, factor using the difference of squares formula,
a^2-b^2=(a+b)(a-b)
where
a=x^4+1
and
b=x^2

Simplify.
(X^4+1+x^2)(x^4+1-x^2)
Step-by-step explanation:

Have a great day

given:

[tex] {x}^{8} + {x}^{4} + 1[/tex]

to find:

factorise

solution:

[tex] {x}^{8} + {x}^{4} + 1[/tex]

[tex] = x ^{8} + 2 {x}^{4} + 1 - {x}^{4} [/tex]

[tex] = ( {x}^{4} + 1 {)}^{2} - ( {x}^{2} {)}^{2} [/tex]

[tex] = ({x}^{4 } + 1 + {x}^{2}) ( {x}^{4} + 1 - {x}^{2} )[/tex]

[tex] = ( {x}^{4} + 2 {x}^{2} + 1 - {x}^{2} )( {x}^{4} - {x}^{2} + 1)[/tex]

[tex] = (( {x}^{2} + 1 {)}^{2} - {x}^{2} )( {x}^{4} - {x}^{2} + 1)[/tex]

[tex] = ( {x}^{2} + 1 + x)( {x}^{2} + 1 - x)[/tex]

[tex] = ( {x}^{4} - {x}^{2} + 1)[/tex]

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE