find the value of x

Answer:
55°
Step-by-step explanation:
[tex]m\angle X = m\angle Z[/tex] (Opposite angles of a parallelogram)
[tex]\implies m\angle X = 70\degree[/tex]
In [tex]\triangle WXY[/tex]
WX = XY (given)
[tex]\implies m\angle XWY = m\angle XYW[/tex]
(Angles opposite to equal sides are equal)
[tex]m\angle XWY = x [/tex] (Given)
[tex]\implies m\angle XYW=x[/tex]
[tex]\implies x + x + 70\degree=180\degree[/tex]
(By angle sum postulate of a triangle)
[tex]\implies 2x =180\degree-70\degree[/tex]
[tex]\implies 2x= 110\degree[/tex]
[tex]\implies x= \frac{110\degree}{2}[/tex]
[tex]\implies\huge{\orange {\boxed{ x=55\degree}}}[/tex]