Respuesta :

Given :

  • An angle which measures less 64° the measure of its supplementary angle.

To Find :

  • The measure of its supplementary angle.

Solution :

  • Let's assume the one of the supplementary angle as x and the other angle as (x - 64)° .

Now,

According to the Question :

[tex]\longrightarrow\qquad \sf{{x

+ (x - 64) {}^{ \circ} = {180}^{ \circ} }}[/tex]

[tex]\longrightarrow\qquad \sf{{x + x - 64 {}^{ \circ} = {180}^{ \circ} }}[/tex]

[tex]\longrightarrow\qquad \sf{{2x - 64 {}^{ \circ} = {180}^{ \circ} }}[/tex]

[tex]\longrightarrow\qquad \sf{{2x = {180}^{ \circ} + 64 {}^{ \circ}}}[/tex]

[tex]\longrightarrow\qquad \sf{{2x = {244}^{ \circ} }}[/tex]

[tex]\longrightarrow\qquad \sf{{x = \dfrac{{244}^{ \circ}}{2} }}[/tex]

[tex]\longrightarrow\qquad \mathfrak{\pmb{{x = {122}^{ \circ} }}}[/tex]

Therefore,

  • One angle = 122°
  • Other angle = 122° – 64° = 58°

Henceforth ,

  • The measure of the two angles are 122° and 58° .
ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE