. Solve: - 5x² + 5 = - 2x The solution contains a reduced fraction another reduced
fraction with a radical numerator. What is this fraction with a radical numerator?
a

Respuesta :

Consider the given quadratic equation that we have :

[tex]{:\implies \quad \sf -5x^{2}+5=-2x}[/tex]

Multiplying both sides by -1 will yield ;

[tex]{:\implies \quad \sf 5x^{2}-5=2x}[/tex]

Write the above quadratic equation in the form of standard quadratic equation ax² + bx + c = 0 ,

[tex]{:\implies \quad \sf 5x^{2}-2x-5=0}[/tex]

Now , comparing this with the standard form of quadratic equation we will get a = 5 , b = -2 , c = -5 . So now , Discriminant (D) = (-2)² - 4 × 5 × -5 = 4 + 100 = 104

Now , by the quadratic formula ;

[tex]{:\implies \quad \sf x=\dfrac{-(-2)\pm \sqrt{104}}{2\times 5}}[/tex]

[tex]{:\implies \quad \sf x=\dfrac{2\pm 2\sqrt{26}}{2\times 5}}[/tex]

[tex]{:\implies \quad \sf x=\dfrac{\cancel{2}(1\pm \sqrt{26})}{\cancel{2}\times 5}}[/tex]

[tex]{:\implies \quad \bf \therefore \quad \underline{\underline{x=\dfrac{1\pm \sqrt{26}}{5}}}}[/tex]

Used Concepts :-

For any quadratic equation of the form ax² + bx + c , the Discriminant (D) is given by D = b² - 4ac , and the root [tex]\bf x[/tex] of the quadratic equation is given by the quadratic formula as

  • [tex]{\boxed{\bf{x=\dfrac{-b\pm \sqrt{D}}{2a}}}}[/tex]

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE