Respuesta :

Answer:

5.1 cm² (nearest tenth)

Step-by-step explanation:

[tex]\mathsf{area\ of \ sector=\dfrac{\theta\pi r^2}{360} \ (where\ \theta \ is \ measured \ in \ degrees)}[/tex]

Given:

  • r = 5
  • [tex]\theta[/tex] = 80°

[tex]\implies \mathsf{area\ of \ sector=\dfrac{80 \cdot\pi\cdot 5^2}{360}=\dfrac{50}{9}\pi \ cm^2}[/tex]

[tex]\mathsf{area\ of \ triangle=\dfrac12 ab\sin C}[/tex]

Given:

  • a = 5
  • b = 5
  • C = 80°

[tex]\implies \mathsf{area\ of \ triangle=\dfrac12 \cdot 5 \cdot 5\sin (80)=\dfrac{25}{2}\sin(80) \ cm^2}[/tex]

Area of shaded area = area of sector - area of triangle

[tex]\implies \mathsf{area=\dfrac{50}{9}\pi-\dfrac{25}{2}\sin(80)}[/tex]

Therefore, area = 5.1 cm² (nearest tenth)

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE