1. A Capacitor c =5.31 nF, is made of two Parallel square Plates seperated by distance d = 5mm. Find the Area. please ans this, i will give brainliest​

Respuesta :

We know that,

[tex]\huge ➸ C = ϵ₀ \frac{A}{d} [/tex]

  • C⤏Capacitance
  • ϵ₀⤏permittivity of free space constant
  • A⤏Area of capacitor plates
  • d ⤏distance

given ↷

  • C⤏5.31 nF = 5.31 x 10^-9
  • ϵ₀⤏8.85 x 10^-12 F/m
  • A⤏Area of capacitor plates
  • d ⤏5mm

to find ↷

  • The Area

solution ↷

[tex]\begin{gathered}➸ C = ϵ₀ \frac{A}{d} \\ \end{gathered} [/tex]

[tex]\begin{gathered}➸ A =  \frac{Cd}{ϵ₀} \\ \end{gathered}  \\ [/tex]

[tex]\begin{gathered}➸ A =  \frac{5.31 \times  {10}^{ - 9} \times 5 }{8.85 \times  {10}^{ - 12} } \\ \end{gathered}  \\  [/tex]

[tex]➸ A =3 \times  {10}^{3}  {mm}^{2} [/tex]

[tex]➸ A =3  {m}^{2} [/tex]

Hence, the area is 3m²

Answer:

Explanation:

The capacitance of two parallel square plates of area A and separated by distance d is given as:

 C = ε(A/d) where ε is the permittivity of the dielectric material

For air, ε = 8.854x10^(-12) F/m

Substituting into the equation:

5.31x10^(-9) = 8.854x10^(-12) * A / 5x10^(-3)

A = 3.00 m^2

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE