Respuesta :

Answer:

7.50 (nearest hundredth)

Step-by-step explanation:

General form of geometric progression:  [tex]a_n=ar^{n-1}[/tex]

(where [tex]a[/tex] is the initial term and [tex]r[/tex] is the common ratio)

Given progression:

[tex]5\left(\dfrac13\right)^{n-1}[/tex]

Therefore:

  • [tex]a=5[/tex]
  • [tex]r=\dfrac13[/tex]

Sum of a geometric series:

[tex]S_n=\dfrac{a(1-r^n)}{(1-r)}[/tex]

Substituting a = 5, r = 1/3 and n = 10 to find the sum to n = 10:

[tex]\implies S_{10}=\dfrac{5(1-\frac13^{10})}{(1-\frac13)}[/tex]

[tex]\implies S_{10}=7.499873987...[/tex]

[tex]\implies S_{10}=7.50 \textsf{ (nearest hundredth)}[/tex]

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE