Respuesta :
Answer:
Diameter of circle is 18 cm.
Therefore,
Radius = 18/2
Radius = 9 cm
We have been asked to determine the area of Circle .
Formula Used
[tex]☯ \bf \:Area \: of \: circle \: = \pi {r}^{2} [/tex]
Putting the value we obtain
[tex] \implies\sf \: Area \: of \: circle \: = \dfrac{22}{7} \times {9}^{2} \\ \\ \implies\sf \: Area \: of \: circle \: = \dfrac{22}{7} \times 81 \\ \\ \implies\sf \: Area \: of \: circle \: = \dfrac{22 \times 81}{7} \\ \\ \implies\sf \: Area \: of \: circle \: = \dfrac{1782}{7} \\ \\ \implies\sf \: Area \: of \: circle \: = 254.57 \: {cm}^{2} \\ \\ \implies\sf \: Area \: of \: circle \: = 254 {cm}^{2} [/tex]
So, the area of the circle is 254 cm² (nearest whole cm²)
Option (c) 254cm² is your answer.
Answer :
- Option c. 254 cm²
⠀
Given :
- Find the area of a circle whose diameter is 18 cm.
We know,
[tex]{ \longrightarrow\qquad \bf{Area_{(Circle) }= \pi {r}^{2} }}[/tex]
⠀
Where,
- r is the radius of the circle. As Diameter is 18 cm, Therefore, The radius will be 9 cm
- We will take the value of π as [tex] \sf \: \dfrac{22}{7} [/tex]
⠀
Now, Substituting the values in the formula :
[tex]{\longrightarrow\qquad \sf{Area_{(Circle) }= \dfrac{22}{7} \times {9}^{2} }}[/tex]
⠀
[tex]{\longrightarrow\qquad \sf{Area_{(Circle) }= \dfrac{22}{7} \times 81 }}[/tex]
⠀
[tex]{\longrightarrow\qquad \sf{Area_{(Circle) }= \dfrac{22 } { \cancel7} \times \cancel{81} }}[/tex]
⠀
[tex]{\longrightarrow\qquad \sf{Area_{(Circle) }\approx {22 \times11.57 } }}[/tex]
⠀
[tex]{\longrightarrow\qquad \bf{Area_{(Circle) }\approx 254.57 }}[/tex]
⠀
Therefore,
- Area of the circle is 254 cm². (Nearest whole cm²).