Respuesta :

Answer:

Diameter of circle is 18 cm.

Therefore,

Radius = 18/2

Radius = 9 cm

We have been asked to determine the area of Circle .

Formula Used

[tex]☯ \bf \:Area \: of \: circle \: = \pi {r}^{2} [/tex]

Putting the value we obtain

[tex] \implies\sf \: Area \: of \: circle \: = \dfrac{22}{7} \times {9}^{2} \\ \\ \implies\sf \: Area \: of \: circle \: = \dfrac{22}{7} \times 81 \\ \\ \implies\sf \: Area \: of \: circle \: = \dfrac{22 \times 81}{7} \\ \\ \implies\sf \: Area \: of \: circle \: = \dfrac{1782}{7} \\ \\ \implies\sf \: Area \: of \: circle \: = 254.57 \: {cm}^{2} \\ \\ \implies\sf \: Area \: of \: circle \: = 254 {cm}^{2} [/tex]

So, the area of the circle is 254 cm² (nearest whole cm²)

Option (c) 254cm² is your answer.

Answer :

  • Option c. 254 cm²

Given :

  • Find the area of a circle whose diameter is 18 cm.

We know,

[tex]{ \longrightarrow\qquad \bf{Area_{(Circle) }= \pi {r}^{2} }}[/tex]

Where,

  • r is the radius of the circle. As Diameter is 18 cm, Therefore, The radius will be 9 cm

  • We will take the value of π as [tex] \sf \: \dfrac{22}{7} [/tex]

Now, Substituting the values in the formula :

[tex]{\longrightarrow\qquad \sf{Area_{(Circle) }= \dfrac{22}{7} \times {9}^{2} }}[/tex]

[tex]{\longrightarrow\qquad \sf{Area_{(Circle) }= \dfrac{22}{7} \times 81 }}[/tex]

[tex]{\longrightarrow\qquad \sf{Area_{(Circle) }= \dfrac{22 } { \cancel7} \times \cancel{81} }}[/tex]

[tex]{\longrightarrow\qquad \sf{Area_{(Circle) }\approx {22 \times11.57 } }}[/tex]

[tex]{\longrightarrow\qquad \bf{Area_{(Circle) }\approx 254.57 }}[/tex]

Therefore,

  • Area of the circle is 254 cm². (Nearest whole cm²).
ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE