Respuesta :

Answer:

r = 2[tex]\sqrt{6}[/tex]

Step-by-step explanation:

the radius r of the circle is AB

the angle between a tangent and the radius at the point of contact = 90°

then Δ Abc is a right triangle

using Pythagoras' identity

AB² + BC² = AC² ( substitute values )

AB² + 5² = 7²

AB² + 25 = 49 ( subtract 25 from both sides )

AB² = 24 ( take square root of both sides )

AB = [tex]\sqrt{24}[/tex] = [tex]\sqrt{4(6)}[/tex] = [tex]\sqrt{4}[/tex] × [tex]\sqrt{6}[/tex] = 2[tex]\sqrt{6}[/tex]

Answer:

[tex]radius=2\sqrt{6}[/tex]

Step-by-step explanation:

[tex]AB^2\:+\:BC^2\:=AC^2[/tex]

[tex]AB^2\:+\:5^2\:=7^2[/tex]

[tex]AB^2\:+\:25\:=49[/tex]

[tex]AB^2\:=24[/tex]

[tex]AB=\sqrt{24}=\sqrt{4*6}=2\sqrt{6}[/tex]

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE