Respuesta :

Answer:

[tex]x=7[/tex]

Step-by-step explanation:

[tex]x =\sqrt{(x+18)}+2[/tex]

subtract 2 from both sides:

[tex]x -2=\sqrt{(x+18)}[/tex]

square both sides:

[tex](x -2)^2=x+18[/tex]

expand brackets:

[tex]x^2-4x+4=x+18[/tex]

subtract x from both sides:

[tex]x^2-5x+4=18[/tex]

subtract 18 from both sides:

[tex]x^2-5x-14=0[/tex]

factor:

[tex]x^2+2x-7x-14=0[/tex]

[tex]x(x+2)-7(x+2)=0[/tex]

[tex](x+2)(x-7)=0[/tex]

solve for x:

[tex]x+2=0\implies x=-2[/tex]

[tex]x-7=0\implies x=7[/tex]

Now we have found the values of x, input them into the original equation to verify:

when [tex]x = -2[/tex]:

[tex]\sqrt{(-2 +18)}+2=6\\\\ 6\neq 2\implies \textsf {incorrect}[/tex]

when [tex]x = 7[/tex]:

[tex]\sqrt{(7+18)}+2=7\\\\ 7=7\implies \textsf {correct}[/tex]

Therefore, the only correct solution is [tex]x=7[/tex]

Let's find x

[tex]\\ \rm\rightarrowtail x=\sqrt{x+18}+2[/tex]

[tex]\\ \rm\rightarrowtail x-2=\sqrt{x+18}[/tex]

[tex]\\ \rm\rightarrowtail x^2-4x+4={x+18}[/tex]

[tex]\\ \rm\rightarrowtail x^2-5x-14=0[/tex]

[tex]\\ \rm\rightarrowtail x^2+2x-7x-14=0[/tex]

[tex]\\ \rm\rightarrowtail (x+2)(x-7)=0[/tex]

  • x=-2,7
ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE