Respuesta :
Given Equation Is:
[tex] \: \: [/tex]
- [tex] \sf \large \frac{a}{2} + b[/tex]
[tex] \: \: [/tex]
Now, Put the value of a = -4 and b = -3 in given eqn .
[tex] \: \: [/tex]
- [tex] \sf \large \: \frac{ - 4}{2} - 3[/tex]
[tex] \: \: [/tex]
- [tex] \sf \large \cancel \frac{ - 4}{ \: \: 2} - 3[/tex]
[tex] \: \: [/tex]
- [tex] \sf \large \: - 2 - 3[/tex]
[tex] \: \: [/tex]
- [tex] \boxed { \sf \large \color{pink} \: \: \: \: \: \: \: 5 \: \: \: \: \: \: \: }[/tex]
[tex] \: \: [/tex]
Hope Helps!:)
The solution to the equation takes the form a/2+b, where, a = -4 and b= -3, is 4 or -5 depending on the equation used.
What is the substitution of variables into an equation?
The substitution of variables takes a defined pattern. In the given question, we are to replace the following values for a and b. i.e. a = -4 and b = -3 into the equation a/2+b.
So,
- If a = - 4;
- and b = -3
Then, using the expression:
[tex]\mathbf{=\dfrac{a}{2+b}}[/tex]
The solution to the equation can be calculated as:
[tex]\mathbf{=\dfrac{-4}{2+(-3)}}[/tex]
[tex]\mathbf{=\dfrac{-4}{-1}}[/tex]
Divide both the numerator and denominator by (-1)
= 4
However, if the equation is [tex]\mathbf{\dfrac{a}{2}+b}[/tex]
The solution to the equation will be as follows:
[tex]\mathbf{\dfrac{-4}{2}+(-3)}[/tex]
= -2 - 3
= -5
Learn more about variables here:
https://brainly.com/question/24751617
#SPJ5