A trapezoid has a height of 10 centimeters. One parallel base has a length of 7 centimeters, and the other parallel base has a length of 13 centimeters.



What is the area of the trapezoid?

Respuesta :

Need to Find :- The area of the trapezium.

We are here provided with height and two parallel bases of trapezium and we are interested in finding out the area of the trapezium.

As we know that,

[tex]\implies\sf \red{Area_{trapezium}= \dfrac{1}{2}\times (sum\ of \ parallel\ sides )\times height}[/tex]

On substituting the respective values,

[tex]\sf: \implies Area =\dfrac{1}{2}\times (7cm +13cm)\times 10cm \\ [/tex]

[tex]\sf : \implies Area = 20cm \times 5cm \\[/tex]

[tex]\sf : \implies \underline{\boxed{\pink{\frak{ Area = 100cm^2}}}}\\[/tex]

[tex]\underline{\underline{\textsf{ $\therefore$Hence the area of the trapezium is \textbf{100 cm$\bf ^2$ }.}}}[/tex]

Given :

  • Base = 7 cm and 13 cm.
  • Height = 10 cm.

To find :

  • Area of trapezoid.

Solution :

We know,

[tex]{\qquad \dashrightarrow{ \bf{Area_{(Trapezoid)}= \dfrac{1}{2 } \times (b_{1} + b_{2}) \times h} }}[/tex]

Now, Substituting the values :

[tex]{\qquad \dashrightarrow{ \sf{Area_{(Trapezoid)}= \dfrac{1}{2 } \times (7 + 13) \times 10} }}[/tex]

[tex]{\qquad \dashrightarrow{ \sf{Area_{(Trapezoid)}= \dfrac{1}{2 } \times 20 \times 10} }}[/tex]

[tex]{\qquad \dashrightarrow{ \sf{Area_{(Trapezoid)}= \dfrac{1}{2 } \times 200} }}[/tex]

[tex]{\qquad \dashrightarrow{ \bf{Area_{(Trapezoid)}=100} }}[/tex]

Therefore,

  • The area of the trapezoid is 100 cm² .
ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE