[tex]\bold{\huge{\underline{ Solution }}}[/tex]
Here, we have,
We know that, For finding amount in compound interest we use formula :-
[tex]\bold{ A = P( 1 + }{\bold{\dfrac{ R}{100}}}{\bold{)^{n}}}[/tex]
Subsitute the required values,
[tex]\sf{ A = 6500( 1 + }{\sf{\dfrac{11 }{100}}}{\sf{)^{1}}}[/tex]
[tex]\sf{ A = 6500( }{\sf{\dfrac{ 100 + 11}{100}}}{\sf{)^{1}}}[/tex]
[tex]\sf{ A = 6500( }{\sf{\dfrac{ 111}{100}}}{\sf{)^{1}}}[/tex]
[tex]\sf{ A = 6500 {\times} }{\sf{\dfrac{ 111}{100}}}[/tex]
[tex]\sf{ A = 65 {\times} 111 }[/tex]
[tex]\bold{ A = 7215 \: dollars }[/tex]
Hence, The total amount he will recieve at the end of 1 year is $7215
Here, we have,
Amount at the end of 2 years will be
[tex]\sf{ A = 6500( 1 + }{\sf{\dfrac{11 }{100}}}{\sf{)^{2}}}[/tex]
[tex]\sf{ A = 6500( }{\sf{\dfrac{ 100 + 11}{100}}}{\sf{)^{2}}}[/tex]
[tex]\sf{ A = 6500( }{\sf{\dfrac{ 111}{100}}}{\sf{)^{2}}}[/tex]
[tex]\sf{ A = 6500 {\times} }{\sf{\dfrac{ 111}{100}}}{\sf{\times{\dfrac{ 111}{100}}}}[/tex]
[tex]\sf{ A = 65 {\times} 111 {\times} 1.11}[/tex]
[tex]\sf{ A = 7215 {\times} 1.11 }[/tex]
[tex]\bold{ A = 8008.65 }[/tex]
Hence, The total amount he will receive at the end of 2 years will be $8008.65