Answer:
[tex]\boxed{\bf\:r = \frac{55 \sqrt{314}}{157} \approx 6.21 \: units}[/tex]
Step-by-step explanation:
Given,
Area of the circle = 121 units²
We know that, the formula of the area of a circle = [tex]\boxed{\pi r ^{2}}[/tex]
Let's use the value of [tex]\pi[/tex] as 3.14.
We need to find the radius (r) of the circle.
[tex]\rule{150}{2}[/tex]
By using this formula,
[tex]\sf\:A = \pi \:r^{2}\\\sf\:121 = 3.14* r^{2}\\\sf\:\frac{121}{3.14}=r^{2} \\\sf\:\frac{12100}{314}=r^{2} \\\sf\:\frac{6050}{157}=r^{2} \\\\\sf\:By \: simplifying \: it \: further,\\\boxed{\bf\:r = \frac{55 \sqrt{314}}{157} \approx 6.21 \: units}[/tex]
[tex]\rule{150}{2}[/tex]