Calculate the following limit without using
L'Hôpital's rule
[tex] \rm\underset{n \to \infty}{\lim} \dfrac{ \sqrt[3]{ \left( 1 + \dfrac{1}{ \sqrt[5]{2} } + \dfrac{1}{\sqrt[5]{3} } + \dots \dfrac{1}{\sqrt[5]{n}}\right)^{2} } }{\sqrt[5]{ \left( 1 + \dfrac{1}{ \sqrt[3]{2} } + \dfrac{1}{\sqrt[3]{3} } + \dots \dfrac{1}{\sqrt[3]{n}}\right)^{4} }} [/tex]

Respuesta :

For brevity, let

[tex]S_i = \displaystyle \sum_{k=1}^n \frac1{\sqrt[i]{k}}[/tex]

Rewrite the limit as

[tex]\displaystyle \lim_{n\to\infty} \frac{{S_5}^{\frac23}}{{S_3}^{\frac45}} = \lim_{n\to\infty} \frac{n^{\frac23} \left(\frac{S_5}n\right)^{\frac23}}{n^{\frac45} \left(\frac{S_3}n\right)^{\frac45}} = \lim_{n\to\infty} \frac1{n^{\frac2{15}}} \times \frac{\left(\lim\limits_{n\to\infty}\left(\frac1n S_5\right)\right)^{\frac23}}{\left(\lim\limits_{n\to\infty}\left(\frac1n S_3\right)\right)^{\frac45}}[/tex]

The two limits involving S are equivalent to definite integrals,

[tex]\displaystyle \lim_{n\to\infty} \frac1n S_i = \lim_{n\to\infty} \frac1n \sum_{k=1}^n \frac1{\sqrt[i]{\frac kn}} = \int_0^1 \frac1{\sqrt[i]{x}} \, dx = \frac i{i-1}[/tex]

Then the end result is

[tex]\displaystyle 0 \times \frac{\left(\frac54\right)^{\frac23}}{\left(\frac32\right)^{\frac45}} = \boxed{0}[/tex]

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE