Respuesta :

4n^2 + 28n + 49 = 0 factorises to:
(2n+7)(2n+7) = 0

Answer:

Factor of Equation  [tex]4n^2+28n+49[/tex] is [tex]\left(2n+7\right)\left(2n+7\right)[/tex]

Step-by-step explanation:

Given : Equation  [tex]4n^2+28n+49[/tex]

We have to factorize the given equation completely.

Consider the given equation  [tex]4n^2+28n+49[/tex]

We can rewrite [tex]4n^2=2^2n^2[/tex] , we get,

[tex]=2^2n^2+28n+49[/tex]

We can rewrite [tex]49=7^2[/tex] , we get,

[tex]=2^2n^2+28n+7^2[/tex]

Apply exponent rule, [tex]a^mb^m=\left(ab\right)^m[/tex]

[tex]=\left(2n\right)^2+28n+7^2[/tex]

Apply identity, [tex]\left(a+b\right)^2=a^2+2ab+b^2[/tex] ,we get,

[tex]\left(2n+7\right)^2[/tex]

Thus, Factor of Equation  [tex]4n^2+28n+49[/tex] is [tex]\left(2n+7\right)\left(2n+7\right)[/tex]

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE