Respuesta :

Answer:

27

Step-by-step explanation:

[tex] \frac{2 {}^{3} \times 3 {}^{4} \times 4}{3 \times 32 } [/tex]

Make everything in the form of exponet.

[tex] \frac{ {2}^{3} \times {3}^{4} \times {2}^{2} }{3 {}^{1} \times 2 {}^{5} } [/tex]

Use the rule.

[tex]a {}^{m} \times {a}^{n} = a {}^{m + n} [/tex]

[tex] \frac{2 {}^{3 + 2} \times {3}^{4} }{3 \times {2}^{5} } [/tex]

[tex] \frac{2 {}^{5} \times {3}^{4} }{3 \times {2}^{5} } [/tex]

Cancel out like Terms.

[tex] \frac{3 {}^{4} }{3} [/tex]

Use the property

[tex] \frac{a {}^{m} }{a {}^{n} } = {a}^{m - n} [/tex]

So we have

[tex]3 {}^{4 - 1} = 3 {}^{3} [/tex]

[tex]3 {}^{3} = 27[/tex]

Answer: 3^3

(2^3 x 3^4 x 4)/(3 x 32)
= (2^3 x 3^4 x 2^2)/(2^5 x 3)
= 3^4/3
= 3^3
ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE