Josiah invests $360 into an account that accrues 3% interest annually. Assuming no deposits or withdrawals are made, which equation represents the amount of money in Josiah’s account, y, after x years?

Respuesta :

y=360(1.03)x is the correct set up
aachen

Answer:

[tex]\text{y}=\$360\times(\frac{103}{100})^\text{x}[/tex]

Step-by-step explanation:

Given: Josiah invests $360 into an account that accrues 3% interest annually.

To Find: Assuming no deposits or withdrawals are made, equation that represents the amount of money in Josiah’s account, y, after x years.

Solution:

Total amount in josiah's account after x years= [tex]\text{y}[/tex]

Amount invested in account by Josiah = [tex]\$[/tex] [tex]360[/tex]

Interest accrued by josiah Annually      = [tex]3[/tex] %

Total amount of josiah after 1 year        = [tex]\$360+\$360\times\frac{3}{100}[/tex]

                                                                = [tex]\$ 360(\frac{103}{100})[/tex]

Total amount after 2 years   =                  [tex]\text{Total amount after one year}\times\frac{103}{100}= \$360\times\frac{103}{100}\times\frac{103}{100}[/tex]

                                                              = [tex]\$360\times(\frac{103}{100})^2[/tex]

                                                                 

Therefore,

Equation of money in josiah's account after x years

                            [tex]\text{y}=\$360\times(\frac{103}{100})^\text{x}[/tex]

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE