Respuesta :
The turning point is just the minimum/maximum so the coordinates are (-3,1) which you find from the expression of (x+3)³ + 1
Answer:
The turning points for the given function is (-3,1).
Step-by-step explanation:
The given function is
[tex]f(x)=(x+3)^3+1[/tex]
The turning point of a function where the [tex]f'(x)=0[/tex].
[tex]f'(x)=3(x+3)^2[/tex]
Equate the first derivative equals to 0.
[tex]0=3(x+3)^2[/tex]
[tex]x+3=0[/tex]
[tex]x=-3[/tex]
At the turning point the x-coordinate is -3.
Substitute x=-3 in the given function.
[tex]f(-3)=(-3+3)^3+1[/tex]
[tex]f(-3)=1[/tex]
At the turning point the y-coordinate is 1.
Therefore the turning point is (-3,1).