Respuesta :

The turning point is just the minimum/maximum so the coordinates are (-3,1) which you find from the expression of (x+3)³ + 1

Answer:

The turning points for the given function is (-3,1).

Step-by-step explanation:

The given function is

[tex]f(x)=(x+3)^3+1[/tex]

The turning point of a function where the [tex]f'(x)=0[/tex].

[tex]f'(x)=3(x+3)^2[/tex]

Equate the first derivative equals to 0.

[tex]0=3(x+3)^2[/tex]

[tex]x+3=0[/tex]

[tex]x=-3[/tex]

At the turning point the x-coordinate is -3.

Substitute x=-3 in the given function.

[tex]f(-3)=(-3+3)^3+1[/tex]

[tex]f(-3)=1[/tex]

At the turning point the y-coordinate is 1.

Therefore the turning point is (-3,1).

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE